Publications
Following publications have been announced by our department Inorganic Environmental Chemistry. For further information please contact the marked authors of the publications:
Siems, A., Zimmermann, T., Sanders, T., & Pröfrock, D. (2024): Dissolved trace elements and nutrients in the North Sea – a current baseline. Environ Monit Assess 196, 539, doi:10.1007/s10661-024-12675-2
Abstract:
Primary production is an important driver of marine carbon storage. Besides the major nutrient elements nitrogen, phosphorus, and silicon, primary production also depends on the availability of nutrient-type metals (e.g., Cu, Fe, Mo) and the absence of toxicologically relevant metals (e.g., Ni, Pb). Especially in coastal oceans, carbon storage and export to the open ocean is highly variable and influenced by anthropogenic eutrophication and pollution. To model future changes in coastal carbon storage processes, a solid baseline of nutrient and metal concentrations is crucial. The North Sea is an important shelf sea, influenced by riverine, atmospheric, Baltic Sea, and North Atlantic inputs. We measured the concentrations of dissolved nutrients (NH4+, NO3−, PO43−, and SiO44−) and 26 metals in 337 water samples from various depths within the entire North Sea and Skagerrak. A principal component analysis enabled us to categorize the analytes into three groups according to their predominant behavior: tracers for seawater (e.g., Mo, U, V), recycling (e.g., NO3−, PO43−, SiO44−), and riverine or anthropogenic input (e.g., Ni, Cu, Gd). The results further indicate an increasing P-limitation and increasing anthropogenic gadolinium input into the German Bight.
Süssmann, J., Fischer, E.K., Hildebrandt, L., Walz, E., Greiner, R., Rohn, S., & Fritsche, J. (2024): Nile red staining for rapid screening of plastic-suspect particles in edible seafood tissues. Anal Bioanal Chem, doi:10.1007/s00216-024-05296-8
Abstract:
Concerns regarding microplastic (MP) contamination in aquatic ecosystems and its impact on seafood require a better understanding of human dietary MP exposure including extensive monitoring. While conventional techniques for MP analysis like infrared or Raman microspectroscopy provide detailed particle information, they are limited by low sample throughput, particularly when dealing with high particle numbers in seafood due to matrix-related residues. Consequently, more rapid techniques need to be developed to meet the requirements of large-scale monitoring. This study focused on semi-automated fluorescence imaging analysis after Nile red staining for rapid MP screening in seafood. By implementing RGB-based fluorescence threshold values, the need for high operator expertise to prevent misclassification was addressed. Food-relevant MP was identified with over 95% probability and differentiated from natural polymers with a 1% error rate. Comparison with laser direct infrared imaging (LDIR), a state-of-the-art method for rapid MP analysis, showed similar particle counts, indicating plausible results. However, highly variable recovery rates attributed to inhomogeneous particle spiking experiments highlight the need for future development of certified reference material including sample preparation. The proposed method demonstrated suitability of high throughput analysis for seafood samples, requiring 0.02–0.06 h/cm2 filter surface compared to 4.5–14.7 h/cm with LDIR analysis. Overall, the method holds promise as a screening tool for more accurate yet resource-intensive MP analysis methods such as spectroscopic or thermoanalytical techniques.



