Following publications have been announced by our Institute of Coastal Systems – Analysis and Modeling. For further information please contact the marked authors of the publications:
Bieser, J., Amptmeijer, D.J., Daewel, U., Kuss, J., Soerensen, A.L., & Schrum, C. (2023): The 3D biogeochemical marine mercury cycling model MERCY v2.0 – linking atmospheric Hg to methylmercury in fish. Geosci. Model Dev., 16, 2649–2688, doi:10.5194/gmd-16-2649-2023
Abstract:
Mercury (Hg) is a pollutant of global concern. Due to anthropogenic emissions, the atmospheric and surface ocean Hg burden has increased substantially since preindustrial times. Hg emitted into the atmosphere gets transported on a global scale and ultimately reaches the oceans. There it is transformed into highly toxic methylmercury (MeHg) that effectively accumulates in the food web. The international community has recognized this serious threat to human health and in 2017 regulated Hg use and emissions under the UN Minamata Convention on Mercury. Currently, the first effectiveness evaluation of the Minamata Convention is being prepared, and, in addition to observations, models play a major role in understanding environmental Hg pathways and in predicting the impact of policy decisions and external drivers (e.g., climate, emission, and land-use change) on Hg pollution. Yet, the available model capabilities are mainly limited to atmospheric models covering the Hg cycle from emission to deposition. With the presented model MERCY v2.0 we want to contribute to the currently ongoing effort to improve our understanding of Hg and MeHg transport, transformation, and bioaccumulation in the marine environment with the ultimate goal of linking anthropogenic Hg releases to MeHg in seafood.
Here, we present the equations and parameters implemented in the MERCY model and evaluate the model performance for two European shelf seas, the North and Baltic seas. With the model evaluation, we want to establish a set of general quality criteria that can be used for evaluation of marine Hg models. The evaluation is based on statistical criteria developed for the performance evaluation of atmospheric chemistry transport models. We show that the MERCY model can reproduce observed average concentrations of individual Hg species in water (normalized mean bias: HgT 17 %, Hg0 2 %, MeHg −28 %) in the two regions mentioned above. Moreover, it is able to reproduce the observed seasonality and spatial patterns. We find that the model error for HgT(aq) is mainly driven by the limitations of the physical model setup in the coastal zone and the availability of data on Hg loads in major rivers. In addition, the model error in calculating vertical mixing and stratification contributes to the total HgT model error. For the vertical transport we find that the widely used particle partitioning coefficient for organic matter of log(kd)=5.4 is too low for the coastal systems. For Hg0 the model performance is at a level where further model improvements will be difficult to achieve. For MeHg, our understanding of the processes controlling methylation and demethylation is still quite limited. While the model can reproduce average MeHg concentrations, this lack of understanding hampers our ability to reproduce the observed value range. Finally, we evaluate Hg and MeHg concentrations in biota and show that modeled values are within the range of observed levels of accumulation in phytoplankton, zooplankton, and fish. The model performance demonstrates the feasibility of developing marine Hg models with similar predictive capability to established atmospheric chemistry transport models. Our findings also highlight important knowledge gaps in the dynamics controlling methylation and bioaccumulation that, if closed, could lead to important improvements of the model performance.
Grayek, S., Wiese, A., Ho-Hagemann, H.T.M., & Staneva, J. (2023): Added value of including waves into a coupled atmosphere–ocean model system within the North Sea area. Front. Mar. Sci., 10:1104027, doi:10.3389/fmars.2023.1104027
Abstract:
In this study, the effects of fully coupling the atmosphere, waves, and ocean compared with two-way-coupled simulations of either atmosphere and waves or atmosphere and ocean are analyzed. Two-year-long simulations (2017 and 2018) are conducted using the atmosphere–ocean–wave (AOW) coupled system consisting of the atmosphere model CCLM, the wave model WAM, and the ocean model NEMO. Furthermore, simulations with either CCLM and WAM or CCLM and NEMO are done in order to estimate the impacts of including waves or the ocean into the system. For the North Sea area, it is assessed whether the influence of the coupling of waves and ocean on the atmosphere varies throughout the year and whether the waves or the ocean have the dominant effect on the atmospheric model. It is found that the effects of adding the waves into the system already consisting of atmosphere and ocean model or adding the ocean to the system of atmosphere and wave model vary throughout the year. Which component has a dominant effect and whether the effects enhance or diminish each other depends on the season and variable considered. For the wind speed, during the storm season, adding the waves has the dominant effect on the atmosphere, whereas during summer, adding the ocean has a larger impact. In summer, the waves and the ocean have similar influences on mean sea level pressure (MSLP). However, during the winter months, they have the opposite effect. For the air temperature at 2 m height (T_2m), adding the ocean impacts the atmosphere all year around, whereas adding the waves mainly influences the atmosphere during summer. This influence, however, is not a straight feedback by the waves to the atmosphere, but the waves affect the ocean surface temperature, which then also feedbacks to the atmosphere. Therefore, in this study we identified a season where the atmosphere is affected by the interaction between the waves and the ocean. Hence, in the AOW-coupled simulation with all three components involved, processes can be represented that uncoupled models or model systems consisting of only two models cannot depict.
Omstedt, A., & von Storch, H. (2023): The BALTEX/Baltic Earth program: Excursions and returns. Oceanologia, 2023, doi:10.1016/j.oceano.2023.06.001
Abstract:
The Baltic Sea Experiment (BALTEX) started in 1993 as part of the Global Energy and Water Cycle Experiment (GEWEX). It was later organized into three programs: BALTEX I, BALTEX II, and Baltic Earth. Here, we examine in a brief overview the overall BALTEX achievements, including program goals, risks encountered during the research journey, and knowledge development when finalizing the programs. During three decades of climate and environmental studies of the Baltic Basin within the BALTEX/Baltic Earth programs, significant steps have been taken towards improved scientifically constructed knowledge and efforts to disseminate this knowledge to neighboring sciences and the public. These programs have illustrated the need to actively navigate the European research arena while remaining an independent science network. The well-organized International Baltic Earth Secretariat and many dedicated scientists made the research excursions safe and successful. The learning process relates to improved knowledge of the dynamics of the atmosphere–ocean–land climate system in the Baltic Sea region, the cycling of carbon and other substances, the region’s anthropogenic climate and environmental changes, and how global warming and regional human activities can be detected outside natural variability.
Kühn, B., Kempf, A., Brunel, T., Cole, H., Mathis, M., Sys, K., Trijoulet, V., Vermard, Y., & Taylor, M. (2023): Adding to the mix – Challenges of mixed-fisheries management in the North Sea under climate change and technical interactions. Fisheries Management and Ecology, 30, 360–377, doi:10.1111/fme.12629
Abstract:
Technical interactions (multiple fleets fishing multiple species with various gears, as either target or bycatch), bycatch regulations through a landing obligation, and biological and economic effects of climate change, affecting fisheries yield and profits, provide a challenge for demersal mixed fisheries of the North Sea. A multi-stock, multi-fleet, bioeconomic model was used to understand management options under these combined influences. Scenarios considered climate change effects on recruitment of three main gadoid stocks (cod – Gadus morhua, saithe – Pollachius virens, whiting – Merlangius merlangus), possible future developments of fuel and fish prices, and strict implementation of a landing obligation. The latter leads to decreased yield and profits in the short term due to increased choke effects, mainly of North Sea cod, being influenced by climate-induced productivity changes. Allowing fishing above FMSY, but within sustainable limits, or limiting year-to-year quota changes, could help buffer initial losses at the expense of decreased profits in the mid- to long-term. Economic performance of individual fleets was linked to their main target’s stock status, cost structure, and fuel and fish prices. The results highlight a need to consider both biological and economic consequences of climate change in the management of mixed fisheries.
