Following publications have been announced by our department Aquatic Nutrient Cycles. For further information please contact the marked co-authors of the publications:
Farrell, E.M., Beermann, J., Neumann, A., & Wrede, A. (2022): The interplay of temperature and algal enrichment intensifies bioturbation of the intertidal amphipod Corophium volutator. Journal of Experimental Marine Biology and Ecology, 2022, 151837, doi:10.1016/j.jembe.2022.151837
Abstract:
Bioturbation is a central transport process for ecosystem functioning, especially in large soft sediment habitats like the Wadden Sea. The amphipod C. volutator is a dominant bioturbator in the Wadden Sea, due to its great abundance and almost continuous particle movement. Expedition or loss of its bioturbation activity could thus hold ramifications for ecosystem functioning within sediments, like carbon sequestration and nutrient recycling. Here we test the effect that temperature and organic enrichment have on the bioturbation of C. volutator; two prevalent abiotic factors in the Corophiid’s habitat that have fluctuated over recent decades, and are expected to change in the future. In-situ experiments were conducted under 8 and 15 °C, with varying levels (0 g, 0.1 g, and 0.2 g) of powdered Ulva compressa enriching cores containing C. volutator. We found a significant interaction effect of temperature and organic enrichment on the bioturbation rate of the amphipod, with bioturbation only increasing with added organic enrichment at 15 °C. Further, a threshold within our experiments was also reached under 15 °C, where the amphipod ceased to expedite bioturbation under higher organic enrichment. This upper limit on this dominant bioturbation imposed with organic enrichment emphasizes the sensitivity of C. volutator. Our findings reveal bioturbation can be limited by temperature in colder months, and opposingly, limited by organic enrichment under warmer conditions. In future Wadden Sea scenarios where temperature is predicted to be warmer and winters milder, enhanced bioturbation activity by C. volutator could prove crucial in continued ecosystem functions.
Wang, S.V., Wrede, A., Tremblay, N., & Beermann, J. (2022): Low-frequency noise pollution impairs burrowing activities of marine benthic invertebrates. Environmental Pollution, Volume 310, 2022, 119899, doi:10.1016/j.envpol.2022.119899
Abstract:
Sounds from human activities such as shipping and seismic surveys have been progressively invading natural soundscapes and pervading oceanic ambient sounds for decades. Benthic invertebrates are important ecosystem engineers that continually rework the sediment they live in. Here, we tested how low-frequency noise (LFN), a significant component of noise pollution, affects the sediment reworking activities of selected macrobenthic invertebrates. In a controlled laboratory setup, the effects of acute LFN exposure on the behavior of three abundant bioturbators on the North Atlantic coasts were explored for the first time by tracking their sediment reworking and bioirrigation activities in noisy and control environments via luminophore and sodium bromide (NaBr) tracers, respectively. The amphipod crustacean Corophium volutator was negatively affected by LFN, exhibiting lower bioturbation rates and shallower luminophore burial depths compared to controls. The effect of LFN on the polychaete Arenicola marina and the bivalve Limecola balthica remained inconclusive, although A. marina displayed greater variability in bioirrigation rates when exposed to LFN. Furthermore, a potential stress response was observed in L. balthica that could reduce bioturbation potential. Benthic macroinvertebrates may be in jeopardy along with the crucial ecosystem-maintaining services they provide. More research is urgently needed to understand, predict, and manage the impacts of anthropogenic noise pollution on marine fauna and their associated ecosystems.
Teschke, K., Kraan, C., Kloss, P., Andresen, H., Beermann, J., Fiorentino, D., Gusky, M., Hansen, M.L.S., Konijnenberg, R., Koppe, R., Pehlke, H., Piepenburg, D., Sabbagh, T., Wrede, A., Brey, T., & Dannheim, J. (2022): CRITTERBASE, a science-driven data warehouse for marine biota. Sci Data 9, 483, doi:10.1038/s41597-022-01590-1
Abstract:
Data on marine biota exist in many formats and sources, such as published literature, data repositories, and unpublished material. Due to this heterogeneity, information is difficult to find, access and combine, severely impeding its reuse for further scientific analysis and its long-term availability for future generations. To address this challenge, we present CRITTERBASE, a publicly accessible data warehouse and interactive portal that currently hosts quality-controlled and taxonomically standardized presence/absence, abundance, and biomass data for 18,644 samples and 3,664 benthic taxa (2,824 of which at species level). These samples were collected by grabs, underwater imaging or trawls in Arctic, North Sea and Antarctic regions between the years 1800 and 2014. Data were collated from literature, unpublished data, own research and online repositories. All metadata and links to primary sources are included. We envision CRITTERBASE becoming a valuable and continuously expanding tool for a wide range of usages, such as studies of spatio-temporal biodiversity patterns, impacts and risks of climate change or the evidence-based design of marine protection policies.
Dale, A.W., Clemens, D., Dähnke, K., Korth, F., Wankel, S.D., Schroller-Lomnitz, U., Wallmann, K., & Sommer, S. (2022): Nitrogen cycling in sediments on the NW African margin inferred from N and O isotopes in benthic chambers. Front. Mar. Sci. 9:902062, doi:10.3389/fmars.2022.902062
Abstract:
Benthic nitrogen cycling in the Mauritanian upwelling region (NW Africa) was studied in June 2014 from the shelf to the upper slope where minimum bottom water O2 concentrations of 25 µM were recorded. Benthic incubation chambers were deployed at 9 stations to measure fluxes of O2, dissolved inorganic carbon (DIC) and nutrients (NO3–, NO2–, NH4+, PO43-, H4SiO4) along with the N and O isotopic composition of nitrate (δ15N-NO3– and δ18O-NO3–) and ammonium (δ15N-NH4+). O2 and DIC fluxes were similar to those measured during a previous campaign in 2011 whereas NH4+ and PO43- fluxes on the shelf were 2 – 3 times higher and possibly linked to a long-term decline in bottom water O2 concentrations. The mean isotopic fractionation of NO3– uptake on the margin, inferred from the loss of NO3– inside the chambers, was 1.5 ± 0.4 ‰ for 15/14N (15ϵapp) and 2.0 ± 0.5 ‰ for 18/16O (18ϵapp). The mean 18ϵapp:15ϵapp ratio on the shelf (< 100 m) was 2.1 ± 0.3, and higher than the value of 1 expected for microbial NO3–reduction. The 15ϵapp are similar to previously reported isotope effects for NO3– respiration in marine sediments but lower than determined in 2011 at a same site on the shelf. The sediments were also a source of 15N-enriched NH4+ (9.0 ± 0.7 ‰). A numerical model tuned to the benthic flux data and that specifically accounts for the efflux of 15N-enriched NH4+ from the seafloor, predicted a net benthic isotope effect of N loss (15ϵsed) of 3.6 ‰; far above the more widely considered value of ~0‰. This result is further evidence that the assumption of a universally low or negligible benthic N isotope effect is not applicable to oxygen-deficient settings. The model further suggests that 18ϵapp:15ϵapp trajectories > 1 in the benthic chambers are most likely due to aerobic ammonium oxidation and nitrite oxidation in surface sediments rather than anammox, in agreement with published observations in the water column of oxygen deficient regions.
