Following publications have been announced by our department Chemistry Transport Modeling. For further information please contact the marked authors of the publications:
Badeke, R., Matthias, V., Karl, M., & Grawe, D. (2022): Effects of vertical ship exhaust plume distributions on urban pollutant concentration – a sensitivity study with MITRAS v2.0 and EPISODE-CityChem v1.4. Geosci. Model Dev., 15, 4077–4103, doi:10.5194/gmd-15-4077-2022
Abstract:
The modeling of ship emissions in port areas involves several uncertainties and approximations. In Eulerian grid models, the vertical distribution of emissions plays a decisive role for the ground-level pollutant concentration. In this study, model results of a microscale model, which takes thermal plume rise and turbulence into account, are derived for the parameterization of vertical ship exhaust plume distributions. This is done considering various meteorological and ship-technical conditions. The influence of three different approximated parameterizations (Gaussian distribution, single-cell emission and exponential Gaussian distribution) on the ground-level concentration are then evaluated in a city-scale model. Choosing a Gaussian distribution is particularly suitable for high wind speeds (>5 m s−1) and a stable atmosphere, while at low wind speeds or unstable atmospheric conditions the plume rise can be more closely approximated by an exponential Gaussian distribution. While Gaussian and exponential Gaussian distributions lead to ground-level concentration maxima close to the source, with single-cell emission assumptions the maxima ground-level concentration occurs at a distance of about 1500 m from the source. Particularly high-resolution city-scale studies should therefore consider ship emissions with a suitable Gaussian or exponential Gaussian distribution. From a distance of around 4 km, the selected initial distribution no longer shows significant differences for the pollutant concentration near the ground; therefore, model studies with lower resolution can reasonably approximate ship plumes with a single-cell emission.
Schwarzkopf, D.A., Petrik, R., Matthias, V., Quante, M., Yu, G., & Zhang, Y. (2022): Comparison of the Impact of Ship Emissions in Northern Europe and Eastern China. Atmosphere 2022, 13, 894, doi:10.3390/atmos13060894
Abstract:
It is well known that ship emissions contribute significantly to atmospheric pollution. However, the impact on air quality can regionally vary, as influenced by parameters such as the composition of the regional shipping fleet, state of background atmospheric pollution, and meteorological aspects. This study compared two regions with high shipping densities in 2015. These include the North and Baltic Seas in Europe and the Yellow and East China Seas in China. Here, a key focal point is an evaluation of differences and similarities of the impacts of ship emissions under different environmental conditions, particularly between regions with medium (Europe) and high air pollution (China). To assess this, two similarly performed chemical transport model runs were carried out with highly resolved bottom-up ship emission inventories for northern Europe and China, calculated with the recently developed MoSES model, publicly available emissions data for nonshipping sources (EDGAR, MEIC). The performance of the model was evaluated against measurement data recorded at coastal stations. Annual averages at affected coastal regions for NO2, SO2, O3 and PM2.5 were modeled in Europe to be 3, below 0.3, 2.5, 1 and in China 3, 2, 2–8, 1.5, respectively, all given in μg/m3. In highly affected regions, such as large harbors, the contributions of ship-related emissions modeled in Europe were 15%, 0.3%, −12.5%, 1.25% and in China were 15%, 6%, −7.5%, 2%, respectively. Absolute pollutant concentrations from ships were modeled slightly higher in China than in Europe, albeit the relative impact was smaller in China due to higher emissions from other sectors. The different climate zones of China and the higher level of atmospheric pollution were found to seasonally alter the chemical transformation processes of ship emissions. Especially in northern China, high PM concentrations during winter were found to regionally inhibit the transformation of ship exhausts to secondary PM, and reduce the impact of ship-related aerosols, compared to Europe.
Karl, M., Pirjola, L., Grönholm, T., Kurppa, M., Anand, S., Zhang, X., Held, A., Sander, R., Dal Maso, M., Topping, D., Jiang, S., Kangas, L., & Kukkonen, J. (2022): Description and evaluation of the community aerosol dynamics model MAFOR v2.0. Geosci. Model Dev., 15, 3969–4026, doi:10.5194/gmd-15-3969-2022
Abstract:
Numerical models are needed for evaluating aerosol processes in the atmosphere in state-of-the-art chemical transport models, urban-scale dispersion models, and climatic models. This article describes a publicly available aerosol dynamics model, MAFOR (Multicomponent Aerosol FORmation model; version 2.0); we address the main structure of the model, including the types of operation and the treatments of the aerosol processes. The model simultaneously solves the time evolution of both the particle number and the mass concentrations of aerosol components in each size section. In this way, the model can also allow for changes in the average density of particles. An evaluation of the model is also presented against a high-resolution observational dataset in a street canyon located in the centre of Helsinki (Finland) during afternoon traffic rush hour on 13 December 2010. The experimental data included measurements at different locations in the street canyon of ultrafine particles, black carbon, and fine particulate mass PM1. This evaluation has also included an intercomparison with the corresponding predictions of two other prominent aerosol dynamics models, AEROFOR and SALSA. All three models simulated the decrease in the measured total particle number concentrations fairly well with increasing distance from the vehicular emission source. The MAFOR model reproduced the evolution of the observed particle number size distributions more accurately than the other two models. The MAFOR model also predicted the variation of the concentration of PM1 better than the SALSA model. We also analysed the relative importance of various aerosol processes based on the predictions of the three models. As expected, atmospheric dilution dominated over other processes; dry deposition was the second most significant process. Numerical sensitivity tests with the MAFOR model revealed that the uncertainties associated with the properties of the condensing organic vapours affected only the size range of particles smaller than 10 nm in diameter. These uncertainties therefore do not significantly affect the predictions of the whole of the number size distribution and the total number concentration. The MAFOR model version 2 is well documented and versatile to use, providing a range of alternative parameterizations for various aerosol processes. The model includes an efficient numerical integration of particle number and mass concentrations, an operator splitting of processes, and the use of a fixed sectional method. The model could be used as a module in various atmospheric and climatic models.
