Publications

Publications (Foto: J.-R. Lippels / Hereon)

Following publications have been announced by our Institute of Coastal Systems – Analysis and Modeling. For further information please contact the marked authors of the publications:

 

Liu, F., Daewel, U., Samuelsen, A., Brune, S., Hanz, U., Pohlmann, H., Baehr, J., & Schrum, C. (2021): Can Environmental Conditions at North Atlantic Deep-Sea Habitats Be Predicted Several Years Ahead? – Taking Sponge Habitats as an Example. Front. Mar. Sci., 8:703297, doi:10.3389/fmars.2021.703297

Abstract:

Predicting the ambient environmental conditions in the coming several years to one decade is of key relevance for elucidating how deep-sea habitats, like for example sponge habitats, in the North Atlantic will evolve under near-future climate change. However, it is still not well known to what extent the deep-sea environmental properties can be predicted in advance. A regional downscaling prediction system is developed to assess the potential predictability of the North Atlantic deep-sea environmental factors. The large-scale climate variability predicted with the coupled Max Planck Institute Earth System Model with low-resolution configuration (MPI-ESM-LR) is dynamically downscaled to the North Atlantic by providing surface and lateral boundary conditions to the regional coupled physical-ecosystem model HYCOM-ECOSMO. Model results of two physical fields (temperature and salinity) and two biogeochemical fields (concentrations of silicate and oxygen) over 21 sponge habitats are taken as an example to assess the ability of the downscaling system to predict the interannual to decadal variations of the environmental properties based on ensembles of retrospective predictions over the period from 1985 to 2014. The ensemble simulations reveal skillful predictions of the environmental conditions several years in advance with distinct regional differences. In areas closely tied to large-scale climate variability and ice dynamics, both the physical and biogeochemical fields can be skillfully predicted more than 4 years ahead, while in areas under strong influence of upper oceans or open boundaries, the predictive skill for both fields is limited to a maximum of 2 years. The simulations suggest higher predictability for the biogeochemical fields than for the physical fields, which can be partly attributed to the longer persistence of the former fields. Predictability is improved by initialization in areas away from the influence of Mediterranean outflow and areas with weak coupling between the upper and deep oceans. Our study highlights the ability of the downscaling regional system to predict the environmental variations at deep-sea benthic habitats on time scales of management relevance. The downscaling system therefore will be an important part of an integrated approach towards the preservation and sustainable exploitation of the North Atlantic benthic habitats.

 

Pein, J., Staneva, J., Daewel, U., & Schrum, C. (2021): Channel curvature improves water quality and nutrient filtering in an artificially deepened mesotidal idealized estuary. Continental Shelf Research, Volume 231, 104582, doi:10.1016/j.csr.2021.104582

Abstract:

Estuarine ecology suffers from both physical aspects of human influence, such as dredging, and biogeochemical aspects, such as eutrophication. Apart from being dredged, modern estuaries often manifest rectified geometries deprived of meanders or other nonlinear topographic features. This study has two overarching aims, a theoretical and a practical one. The theoretical objective is to establish an understanding of the effect of physical dynamics induced by channel meanders on the biogeochemical dynamics in a typical estuarine oxygen minimum zone. The practical aim is to clarify whether and how channel curvature can mitigate the consequences of human intervention, such as dredging and eutrophication. To answer these questions, a coupled hydrodynamic and water quality model is applied to a pair of idealized funnel-shaped topographies with dimensions and axial depth distribution similar to the Elbe Estuary, Germany, serving as the prototype estuary in this study. The first topography is symmetric about the channel axis (straight channel), while the second topography contains a small section of sinusoidal meanders in the dredged limnic reach of the estuary. The setups are forced by an M-2 tide and daily salinity and temperature data at the seaward open boundary. Atmospheric and river forcings are based on regional operational and observational data to impose seasonal temperature variability and biogeochemical cycles. The model simulates tidally driven estuarine physics, as well as seasonal estuarine cycles and axial gradients of nutrients, oxygen and plankton that characterize alluvial human-shaped and eutrophied estuaries. The channel meanders in the lower limnic reaches lead to locally enhanced ebb dominance, vertical overturning and increased levels of turbulent kinetic energy. The curvature-induced dynamics decrease turbidity levels by up to 12.5% and increase oxygen concentrations by up to 14% in the area of the oxygen minimum zone, improving the ecological status of the eutrophied estuary. Finally, we assess the sustainability of the ecological benefits of the channel meanders in the face of global warming by applying a simple 2 °C warming scenario to the straight and meandering channel cases. We demonstrate that channel meanders potentially improve estuarine ecology even under increased pressure due to climate change.

 

Ciliberti, S.A., Grégoire, M., Staneva, J., Palazov, A., Coppini, G., Lecci, R., Peneva, E., Matreata, M., Marinova, V., Masina, S., Pinardi, N., Jansen, E., Lima, L., Aydoğdu, A., Creti’, S., Stefanizzi, L., Azevedo, D., Causio, S., Vandenbulcke, L., Capet, A., Meulders, C., Ivanov, E., Behrens, A., Ricker, M., Gayer, G., Palermo, F., Ilicak, M., Gunduz, M., Valcheva, N., & Agostini, P. (2021): Monitoring and Forecasting the Ocean State and Biogeochemical Processes in the Black Sea: Recent Developments in the Copernicus Marine Service. J. Mar. Sci. Eng. 2021, 9, 1146, doi:10.3390/jmse9101146

Abstract:

The Black Sea Monitoring and Forecasting Center (BS-MFC) is the European reference service for the provision of ocean analyses, forecasts, and reanalyses in the Black Sea basin. It is part of the Copernicus Marine Environment and Monitoring Service (CMEMS) and ensures a high level of efficiency in terms of operations, science, and technology for predictions and the monitoring of physical and biogeochemical processes in the Black Sea. The operational BS-MFC framework is based on state-of-the-art numerical models for hydrodynamics, biogeochemistry, and waves; analysis, forecast, and reanalysis are provided on a spatial grid with about 3 km of horizontal resolution that covers the whole Black Sea basin (the Azov Sea is not included). The scientific assessment of BS-MFC products is performed by implementing a product quality dashboard that provides pre-qualification and operational model skills according to GODAE/OceanPredict standards. Novel interfaces based on high-resolution models are part of the scientific development plan to ensure a strong connection with the nearest seas from a modelling point of view, in particular with the Mediterranean Sea. To improve forecasting skills, dedicated online coupled systems are being developed, which involve physics, biogeochemistry, and waves together with the atmosphere and, in the future, with ensemble forecasting methodologies and river-ocean interfaces.

Kommentar hinzufügen

Verwandte Artikel