Publications

Publications (Foto: J.-R. Lippels / Hereon)

Curci, G., Alyuz, U., Barò, R., Bianconi, R., Bieser, J., Christensen, J.H., Colette, A., Farrow, A., Francis, X., Jiménez-Guerrero, P., Im, U., Liu, P., Manders, A., Palacios-Peña, L., Prank, M., Pozzoli, L., Sokhi, R., Solazzo, E., Tuccella, P., Unal, A., Vivanco, M. G., Hogrefe, C., & Galmarini, S. (2019): Modelling black carbon absorption of solar radiation: combining external and internal mixing assumptions. Atmos. Chem. Phys., 19, 181-204, doi:10.5194/acp-19-181-2019

Abstract:

An accurate simulation of the absorption properties is key for assessing the radiative effects of aerosol on meteorology and climate. The representation of how chemical species are mixed inside the particles (the mixing state) is one of the major uncertainty factors in the assessment of these effects. Here we compare aerosol optical properties simulations over Europe and North America, coordinated in the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII), to 1 year of AERONET sunphotometer retrievals, in an attempt to identify a mixing state representation that better reproduces the observed single scattering albedo and its spectral variation. We use a single post-processing tool (FlexAOD) to derive aerosol optical properties from simulated aerosol speciation profiles, and focus on the absorption enhancement of black carbon when it is internally mixed with more scattering material, discarding from the analysis scenes dominated by dust.

We found that the single scattering albedo at 440 nm (ω0,440) is on average overestimated (underestimated) by 3–5 % when external (core-shell internal) mixing of particles is assumed, a bias comparable in magnitude with the typical variability of the quantity. The (unphysical) homogeneous internal mixing assumption underestimates ω0,440 by ∼14 %. The combination of external and core-shell configurations (partial internal mixing), parameterized using a simplified function of air mass aging, reduces the ω0,440 bias to -1 / -3  %. The black carbon absorption enhancement (Eabs) in core-shell with respect to the externally mixed state is in the range 1.8–2.5, which is above the currently most accepted upper limit of ∼1.5. The partial internal mixing reduces Eabs to values more consistent with this limit. However, the spectral dependence of the absorption is not well reproduced, and the absorption Ångström exponent AAE 440675 is overestimated by 70–120 %. Further testing against more comprehensive campaign data, including a full characterization of the aerosol profile in terms of chemical speciation, mixing state, and related optical properties, would help in putting a better constraint on these calculations.

 

Schartau, M., Riethmüller, R., Flöser, G., Beusekom, J.E.E. van, Krasemann, H., Hofmeister, R., & Wirtz, K. (2019): On the separation between inorganic and organic fractions of suspended matter in a marine coastal environment. Progress in Oceanography, Volume 171, Pages 231-250, doi:10.1016/j.pocean.2018.12.011

Abstract:

A central aspect of coastal biogeochemistry is to determine how nutrients, lithogenic and organic matter are distributed and transformed within coastal and estuarine environments. Analyses of the spatio-temporal changes of total suspended matter (TSM) concentration indicate strong and variable linkages between intertidal fringes and pelagic regions. In particular, knowledge about the organic fraction of TSM provides insight to how biogenic and lithogenic particulate matter are distributed in suspension. In our study we take advantage of a set of over 3000 in situ Loss on Ignition (LoI) data from the Southern North Sea that represent fractions of particulate organic matter (POM) relative to TSM (LoI POM:TSM). We introduce a parameterization (POM-TSM model) that distinguishes between two POM fractions incorporated in TSM. One fraction is described in association with mineral particles. The other represents a seasonally varying fresh pool of POM. The performance of the POM-TSM model is tested against data derived from MERIS/ENVISAT-TSM products of the German Bight. Our analysis of remote sensing data exhibits specific qualitative features of TSM that can be attributed to distinct coastal zones. Most interestingly, a transition zone between the Wadden Sea and seasonally stratified regions of the Southern North Sea is identified where mineral associated POM appears in concentrations comparable to those of freshly produced POM. We will discuss how this transition is indicative for a zone of effective particle interaction and sedimentation.The dimension of this transition zone varies between seasons and with location. Our proposed POM-TSM model is generic and can be calibrated against in situ data of other coastal regions.

Kommentar hinzufügen

Verwandte Artikel